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OPTIMAL DISPATCHING OF A FINITE CAPACITY SHUTTLE

Rajat K. Deb

We consider the problem of determining the optimal operating policy

of a two terminal shuttle with fixed capacity Q < =, The passengers i

arrive at each terminal according to Poisson processes and are transported

by a single carrier operating between the terminals. The interterminal

travel time is a positive random variable with finite expectation. Under

P

a fairly general cost structure, we show that the policy which minimizes
the expected total discounted cost over infinite time horizon has the
following form: Suppose the carrier is at one of the terminals with x
number of waiting passengers and suppose that y number of passengers

are waiting at the other terminal. Then the optimal policy is to dispatch
the carrier if and only if x > G(y), where G(y) is a monotone decreasing
control function. Furthermore, G(y) is always less than or equal to the
carrier capacity Q. This control function can be approximated by the

linear functions G(y) = K - By.

KEY WORDS: Finite Capacity Shuttle, Bulk Queue, Markov Decision Process, ]

Dynamic Programming, Optimal Control, Monotone Policies.
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OPTIMAL DISPATCHING OF A FINITE CAPACITY SHUTTLE

Rajat K, Deb !

1. Introduction

We consider the problem of determining optimal control policies for
operating a shuttle service between two terminals, The passengers arrive
at these terminals (numbered O and 1) according to independent Poisson
processes X(t) and Y(ti with respective arrival rates 2, and 2.
The carrier that shuttles back and forth between the terminals has a
capacity Q < =, The interterminal travel times assumed to be independent
random variable with identical distribution B(:) and are independent of
everything else, All arriving passengers wait to be transported to the
other terminal where they exit the system, The system is reviewed at
those points in time when either the carrier has just arrived at one of
the terminals, or when the carrier is waiting at one of the terminals and
a new passenger arrives. The next arrival may take place at either of

the terminals. The state of the system is denoted by (x,y,®) where x

is the number of passengers at terminal O, y is the number of passengers ﬁﬂ

at terminal 1, and ® 1is respectively O or 1 according to whether
the carrier is at terminal O or 1 respectively. At each review point and
only at these points, one of the following actions is taken: (1) the
carrier is dispatched with a batch of passengers (whemn X customers are
at the terminal this batch equals xAQ = min{x,Q}), or (2) the carrier

is not dispatched., Note that upon taking action (1) or (2) the next
control action is taken when the carrier arrives at the other terminal

or when next passenger arrives at terminal 0 or 1,




Costs are charged for carrying the passengers and holding the
passenger in the system. The cost of carrying y passengers is R+cy,
where R and c are non-negative constants, The cost of holding x

customers is hx per unit time., Without loss of generality we assume

that no holding is charged for those passengers who board the carrier
before it leaves the terminal.
Our objective is to find a control policy, that is, a sequence of

decision rules for selecting actions (1) and (2) at each review point,

which minimizes the expected discounted cost over an infinite time horizon.

Optimal control policy for the discounted cost case is presented in
Section 4 (Theorem 4.2), The optimal policy is of the form: Suppose
(xo, Xy, 8) be the state of the system at a review point. Then the
optimal policy is to dispatch the carrier if and only if Xy 2 Gﬁ(xl-s)’
k where GS(xl-S) is a monotone decreasing control function. {
There has been relatively little published work on shuttles with

stochastic arrivals, Deb and Serfozo [2] determined optimal dispatching

i

rules for a one terminal system, Ignall and Kolesar [4] extended a one
terminal system to a two terminal system with infinite capacity, where
dispatching decision is made only at one of the terminals, They conjectured
that a finite capacity shuttle will have an optimal control rule of the i
same form, Barnett [1] compares the average number waiting in the system

} for several control policies, 1In [6] Ignall et al. have suggested a way

of computing the average queue size and the average number of trips for

% an infinite capacity shuttle under a simple dispatching rule based on i

the total number of passengers in the system. Our analysis differ from




others in the sense that we consider a more realistic finite capacity
model and allow the dispatching decisions to be made at both the terminals,

It is interesting to note that the finite capacity shuttle model is
also applicable in the cases where a single server attends two queues as
in the case of multiplexing and some special cases of multiprogramming,

In these cases the server alternates her services between the two queues,

2, Preliminaries

The notation of this section is used throughout this paper. We let
X(t) and Y(t) denote the number of arrivals in time t at terminals
0 and 1 respectively. Set 2Z(t) = X(t) + Y(t) and A = N + M-
Then Z(t) is a Poisson process with intensity A. Let the random

variables T, and gl respectively denote an arbitrary interterminal

g0
travel time and arbitrary passenger interarrival times at the terminals

0 and 1, The random variables < and §1 have respective distri-

» o
butions 1 - exp(-kot), 1- exp()lt) and B(t). Writing ¢ = min(go,gl),

it can be seen that the random variable £ has the distribution 1 - exp(-At).
Let V(x,y,5) be the optimal Q-discounted cost over the infinite time
horizon with continuous discounting factor & and initial state (x,y,&),

Note that herein we supress the effect of the discount factor & on V.

Since the cost of never dispatching the carrier is

(2.1) E fm exp(-at) h(x+y+2(t))dt = h(x+y+NQ)/QA <o
0
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the O-discounted cost V(x,y,8) < h(x+y+N®)/Q., Using Theorem 7.1 of [7],
which also holds for semi-Markov processes with unbounded costs, we obtain

the following optimaligy equation

(2.2) v(x,y,%) = min{f(x,y,d), g(x,y,8)} ,

where f is the cost of not dispatching the customer, and holding the
waiting customers for a time ¢ wuntil the next arrival before taking the
next action. g(x,y, ®) is the cost of dispatching the carrier from the
terminal %, carrying the passengers, hclding the excess passengers (if
any) and the new arrivals for a period 1, after which another action is

taken with the system in state (x+X(7t) - (1-3)xAQ, y+¥(t) - ®(yAQ), 1-B).

Clearly,
3
(2.3) £(x,y,8) = E{f e % h(xsy)de + &% v(xsX(t), y+¥(E), B))
0
= H(x+y) + apV(x+l)y,8) + aqV(x,y+1,8) ,
where
S -Qt
H(x) = Ef e h(X)dt = hX/(af-)\) ’
(0]
a = E{exp(-a8)} = M(ou}) ,
p = PIX(£) = 1] = P[¥(¢) = 0] = A/(Ag+A)) ,
q = P[X(¢) = 0] = P[Y(¢) = 1] = 1-p,




T
(2.4) g(x,7,0) = R + c(xAQ) + E{f e O h(x+y-xAQsZ(t))dt

0

S V(x-xAQ+X(1),y+¥(1), 1)}
= R + c(xAQ) + H(x+y-xAQ) + il dij V(x-xAQ+j,y+i-j, 1),
1>0,0<i< i
(2.5) g(x,y,1) = R + c(yAQ) + H(x+y-yAQ)
+ 5 dij V(x+j, y-yAQ+i-j, o) ,
1>0,0< <1
where
T lat
f(x) =E[ e h(x+2(t))dt

0

(1-b)he/cr + BA(L-b)/0R - et [ e an(e)
0

b = E[EXKPQT)}, dij = alpi qij E)
™) i : 5
b1 ﬂ&})_gl_ (N gpryy a, = (;) e
0 :

Note that {pi} and (qij] are probability mass functions, Zdij = Zalpi = b.

Whenever both the terms on the right of (2.2) are equal, that is f = g,

we write
(2.6) v(x,y,d) = f(x,y,8) .
Also note that from the definition of H and H it follows that

{2.7) H(x) + af(x+1) = H(x) + Zdij H(x+i) = A(x) + 2 lip1 H(x+i) .
1>0




In addition, for any function w(x,y,z) we define the difference operator

A as follows

bwy(x,y,2)

w(x,y,z) - w(x-l,y,zl) %
(2.8)

Awl(x,y,z) w(x,y,z) - w(x,y-1,z) .

For the linear functions H and ﬁ, we define
(2.9) AH = H(x) - H(x-1) = (1l-a)h/a and LR = (1-b)h/a .

We approach the problem of finding an O-optimal using the finite horizon
n-period problem which we define in the equation (2,10), We show that

for each n and hence in the limit a monotone policy of the form described
in Section 1 is optimal, We present these policies in Theorem 4,2, The

n-period problem is defined as follows, Let

s Vo(x,y,s) h(x+y+NQ)/a

(2.10)

l Vn(x,y,b) min{fn(x,y,ﬁ), gn(x,y,b)} 5

where

(2.11) fn(x,y,b) H(x+y) + aan'l(x+1,y,8) + aqvn'l(x,y+1,8) "

= 1e) gn(x,y,o) R + H(x+y-xAQ) + c(xAQ) + Edij Vn'l(x-xAQ+j, y+i-3,1),

(2.13)  g"(x,y,1) = R + A(x+y-yAQ) + c(yAQ) + =d, v (xes, y-yMQ+i-3,0).

i

The summation on d is taken over all i >0 and 0< j < i, We can

ij

consider V" as the cost of operating the system for n review periods

and incurring a final cost Vo at the end of the n-th period, Note that

R —




if the n-th review takes place at € then t 2@ as n - and the
0
cost V  discounted to time 0 is < E{exp(%lﬁ) h(x+y+Z(tn))]

= E{expfQt)) h(x+y+%(tn)] -0 as n -, Furthermore, V" increases

n-1 1

A - ’ n n-
monotonically with n, because if V <V then one can decrease V

by using the n-period policy for the (n-1)-period problem, Moreover, from

n-l(x,y,B) >0 and hence V" t V

(2.1) we get h(x+y+x/a)/a_2 Vn(x,y,ﬁ) >V
as n ->w, Now using the Theorem 6.12 of [7] (which also holds for dis-
counted semi-Markov processes) or more appropriately Theorem 2.2 of [9], J
we assertain that the stationary policy which satisfies equation (2.2)

is optimal, Note that in [8,9] the problem is set up for maximization,
while we are minimizing the total expected costs. 1f we take this into
account, then it is easy to show that the conditions Al and A2 of [9] are

satisfied and hence the Theorem 2.2 of [9] holds. As a consequence of

convergence of V' to V, we conclude that ' 5 f and gn - g.

%, n-Period Problem

In this section we consider the n-period problem defined in (2.10)
and obtain results similar to those of [3]. Without loss of clarity, we
shall often drop the subscripts and arguments of the functions defined
in (2.2) - (2.13). For instance, the statement av" > Agn will stand
for the statements Avg(x,y,B) >-Ag3(x,y,6) and Avq(x,y,b) >'Agn(x,y,8)

for all x, y, and B,

Lemma 3.1. Let AfnZAgn. Then i

(1) av" <af”, :

(11) av" > ag”,




n

Proof. Clearly, (2.10) implies V' < £, V' <g" and for any x, y and ©

either

(3.1) v(x,y,8) = £(*.y,5)
or

(3.2) vi(x,y,8) = g"(x,y,5) .

I1f (3.1) holds, then

n n
(3.2) Avg(x+1,y,6) 5Af3(x+l,y,6), AVl(x,y+1,6) SAfl(x,y+1,6) 4

and

n
(3.%) AVn(x,y,é) > O0f (x,y,D) _>_Agn(x,y,5) .

And if (3.2) holds, then

3 n
AVo(x-*-l’Y,E’) = Ago(x+1,y,5) SAfg(x*'l’y’S) 4

(3.5)

Avrll(x,y+l,6) SAgrl‘(x,y+l,6) 5Af?(x,y+1,8) 2
and
(3.6) &v"(x,y,8) > 0g7(x,y,8) .

e mm———

Now, combining (3.3) and (3.5), we have avt §Afn. From (3.4) and (3.6)

we obtain AV" > Ag",

Lemma 3.2. Let AfnzAgn and suppose that for all x,y and ®

s Ty e

n n n
(3.7)  Df(x,y,8) > A (x,y+1,8), Af(x,y,8) > Of (x+1,y,8) ,

(3.8) Agg(x,y,B) 2Ag8(x,y+1,6) and Agt{(x,y,a) 2Ag?(x+l,y,6) .

Ty P s . 5 S




Then
. n z n
(1) AVo(x,y,b) zAVO(x,yJ,l,E))’

A n n
(ii) &v,(x,y,0) > AV, (x+1,y,).

Proof: The proof is similar to that of Lemma 3.1. Suppose (3.1) holds,
then using the fact V < f, inequality (3.7) and the Lemma 3.1, in that

order, we have

AVn

n n n
ol%,¥,8) 2 8E,(x,y,8) > Of (x,y+1,8) > AV (x,y+1,8) ,

(3.9)
n n n n
Avl(xyyya) 2 Afl(x,Y)B) Z Afl(x+1}y’6) 2 Av]_(x+1’y,6) 5

And if (3.2) holds then using the fact V < g, (3.8) and the Lemma 3.1

we obtain

n n n n
AVO(x,y+1,6) SAgo(x’y+1,6) _<_Ago(x,y,6) _SAVO(x,y,B) :
(3.10)
n n n n
AV, (x+1,y,8) < Ag, (x+1,y,8) < Og(x,y,0) <AV (x,y,0) .

This completes the proof,

Theorem 3.3, If h > (c + R/Q) then for all x, y and n>1

ST

- s

(1) &f
n n
(11) AVY(x,y,5) > AVS(x,y+1,8),
. n n
(iii) AVl(x,y,ﬁ) ZAVl(x+l,y,6),

(iv) &V > e,

bl ) it

|
i
|
-




Proof: We prove this Theorem by induction, Using the definition of af®

and Agn, we have for n =1

(3.11) Al - AH + ab/a = (1-a)b/a + ab/a = b/a .

From the definition of H and the fact Zdij = b we have

1 1 5
(3.12) bgo(x,y,1) = Ogi(x,y,0) = A + zd;; o = ha
and

& for

1 O;XSQ(5=1, YSQ),
(3.13) Lgg(x,y,0) ={
AH + zdij h/& = h/a for B

0’ X>Q (6:1, y>Q).

Since h > a(c + R/Q), therefore (3.11) - (3.13) imply
(3.14) AF > Lp" .

Moreover, using (3.11) - (3.13) it is easily varified that the conditions
(3.7) and (3.8) of the Lemma 3.2 are satisfied and hence parts (i), (ii)
and (iii) of the Theorem 3.3 are true for n = 1. To prove part (iv) note

that from (3.14), Lemma 3.1, (3.12) and (3.13) we have

C
(3.15) avl > agl > { :
h/a > ¢

Now, assuming that the Theorem is true for all n - k, then for n = k+l,

we have

10




(3.16)  ogstt

E

k 2 i
2d, o OV (%-xMQ+j, y+i-j, 1)

(x)y)o) ij

k b e
< OH + Zdij O (x-x0Q+], y+i-], 1)
k-1 : .
= MR + Z.‘dij{AH + ap AV1 (x-xAQ+j+1, y+i-j, 1)

k-1 -
+ aq &V, (x-xAQ+j, y+l+i-j, 1))

IA
B

k-1 :
Zdij OH + aZ‘.dij[pcwl (x+1-(x+1)AQ+j, y+i-j, 1)

k-1 ; o
+ AV (x-xAQ+j, y+l+i-, 1)}

E

= k-
ap{OH + Zdij AVl 1(x+1-(x+1)AQ+j, y+i-j, 1)}

x k-1 y AT
+ aq{AH + Zdij AV1 (x-xAQ+j, y+i-j+l, 1}
k k
= OH + ap Agl(x+1,y,0) + ag Agl(x’y+1,0)
k k
<OH + ap AV, (x+1,y,0) + aq &V (x,y+1,0)

k+1
= Afl (x,y,O) o

The lines 1, 3, 6 and 8 of (3.16) follows from the definitions of Ag and
Af, Lines 2 and 7 follows from the fact that Avk < Afk and Agk < AVk.
Also note that for x > Q, x-xAQ+l = (x+1) - (x+1)AQ and for x < Q-1
x-XAQ = (x+1) - (x+1)AQ. Therefore, for x < Q-1 line 4 equals line 3
and for x > Q, we obtain line 4 by using the induction hypothesis
Avl;'l(xu,y,l) SAVl;'l(x,y,l) for all x and y. Finally, line 5 can

be obtained from (2.7) by noting that p+q = 1, Using symmetry and

arguments similar to those used in (3.16) we obtain

11

.
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1 1
(3.17) sggtt(x,y,1) <8E8 x,y,1)

Moreover, from (2.9) and the induction hypothesis Avk > ¢ we have for

x <Q

(3.18) Agl:'l(x,y,o) ¢ = (l-a)c + ac < (l-a)h/a + ¢

[

AH + apc + aqc <AH 4 ap Avg(x+1,y,0)+aq Avk(x,y+1,0) f

k+1
Afo (%,¥,0) .

For x > Q, using the fact that AVkSAfk, Agk _SAVk, definitions of Af ]

and Ag, and the quality (2.7) we have

$4

(3.19) Agl(;""l(x,y,o) =Of 4 Zdij AVl(;(x-Q+j, y+i-j, 1) j
k SAﬁ + Zdij Afl(;(x-Q+j, y+i-j, 1)

k-1
= A 4+ Zldi OH + Z'.dij{ap AVO (x-Q+1+j, y+i-j, 1)

h|
+ aq Avg'l(x-Q+j, y+i-j+1, 1)}

- ke
= OH + ap(AH + Zdij AVO 1(X-Q+1+j, y+i-j, 1)}

+ aq(AR + 2d,, AVS (x-Qud, yaleiog, 1))

J

K k
= OH + ap Agy(x+1,y,0) + aq Og (x,y+1,0)

<AH 4 ap Av‘(;(xu,y,o) + aq AVH(x,y+1,0)

k+1
= 8£5"(x,y,0) .

12




Combining (3.18) and (3.19) we obtain Agl;+1(x,y,o) SAfg+1(x,y,0) using

arguments similar to those used in (3.18) and (3.19) we can show that

k+1 k+1
Ag1+ (x,y,1) 5Af1+ (x,y,1) and hence
(3.20)

To prove parts (ii) and (iii) of this theorem it is sufficient to show

that the condition (3.7) and (3.8) of the Lemma 3,2 are satisfied. Using

the induction hypothesis and definition of Af we have

k+1 k k
Afo (x,y+1,0) = OH + ap AVO(x+l,y+1,6) - aq AVo(x,y+2,6) .
< AH aAk( 1,y,d avE 1,5 |
: <OH + ap QX+,Y,)+aq ol X,¥+1,0)
- AR(x,¥,8)
and
k+l k k
AT (x+1,y,8) = OH + ap AV{(x42,y,0) + aq AV (x+1,y+1,8)

k k 19
SOH + ap AV (x+1,y,0) + aq AVl(x,y+1,6) |
k
= Afl(x,y,ﬁ) .
To prove (3.8), note that for 5 =0, x<Q, y >0

k+l
(3.21) bg, (%,y,8) = ¢,

13




and for =0, x>Q, y>0 and =1, x >0, y >0, using the fact

k k
AVo(x,y+1,6) _SAVO(x,y,S) for all x, y and B, we have

k

(3.22) Ag:+l(x,y+1,6) = OH 4+ Zd, o Vo(x%-(1-0)Q+j, y+1-0(y+1)AQ+i-j, 1-0)

J
<OH + Zdij Vl(;(x-(l-é)Q+j, y-8(yAQ)+i-j, 1-8)

k+l
- Ago+ (=98] .

Therefore, using (3.21) and (3.22) we obtain

k+1

(3.23) Ago (x,y,&)ZAg‘(;+1(x,y+1,6) -

Using arguments similar to those used in (3.23) we obtain

k+1

k+1l
(x,y,8) > Agl

(3.24) Lg,

(x+1,y,9)

Finally to prove part (iv) of this theorem, we note that (3.20) implies

that the Lemma 3.1 is true for n = k+l and hence

k+1 k+1
(3.26)  AVT(x,y,5) > 88" (x,y,8)
= c fox Bel, 259 {01, 759},
= OH + Zdij AVk(x-(1-6)Q+j, y-0Q+i-j, 1-8) otherwise

ZAH+>:dijC_>_C.

The last line in the above is obtained from the induction hypothesis and

the fact that h/@ > ¢, This completes the proof.




Lemma 3.4. Let h > (¢ + R/Q). Then
Lemma 5.4
(1) Vn(x,y,o) = gn(x,y,o) for all x >Q,

n
(ii) V(x,y,1) = gn(x,y,l) for all y > Q.

Proof. From (2.10) - (2.13) we have

(3.26) fl(x,y,ﬁ) = H(x+y) + ah(x+y+l + %)/Ot

h(x+y+ Na)/a
and from % = 0, writing e = xAQ we have
1
(3.27) g (x,y,0) = R + ce + H(x+y-e) + Zdij(x+y-e+i+)\/a)h/0£ s

From definition of H(x) we have

0

(3.28) fi(x) = (l-b)hx/a + {(1-b)/a - [ t exp(-at) dB(t)} hNC
0

(1-b)hx/a + {A(1-b)/c - ¥ n a" p ) ba
(1-b)hx/a + {A(1l-b)/a - T idij} h/a

Using (3.27), (3.28) and noting that £d . = b, we have

b

(3.29) gl(x,y,o) = (R + ce - he/d) + (x+y+NQ) h/a




If x>Q, then e = Q, and using the fact h > a(c + R/Q), we have
1 1
gl(x,y,o) < fl(x,y,o). Hence V'(x,y,0) = g (x,y,0). Now, suppose that

for all x >Q and sk, £

(x,y,0) > gn(x,y,o) and consequently,
Vn(x,y,o) = gn(x,y,o). Then using the induction hypothesis, equation (2.7)

and the fact h > a(c + R/Q), we have

k
f+1

L}

k k
(x,y,0) = H(x+y) + ap V (x+1,y,0) + aq V (x,y+1,0)

H(x+y) + ap{R + H(x+y+1-Q) + cQ

1)

k- A .
+ Zdij \ 1(x+1-Q+J, y+i-j, 1)}

+ aq{R + B(x+y+1-Q) + cQ

k-1 -
+ zdij VT (x-Q+j, y+l+i-j, 1)}

i

H(Q) + H(x+y-Q) + a(R+cQ) + Zdij{H(x+y+1-Q+i)
+ ap Vk'l(x+l-Q+j, y+i-j, 1)

+ aq Vk'l(x-Q+j, y+l+i-j, 1)}

>H(Q) - (1l-a) (R+cQ) + R + cQ + H(x+y-Q)

¥ Edi Vk(x-Q+j, y+i~j, 1)

i
1

(1-a) Q(b/a - c - B/Q) + 8 }(x,y,0)

1
g1(x,y,0) .

For =1 and y >1Q, the proof is analogous.

Lemma 3.5. Let h < O(c + R/Q). Then for all x>0, y >0 and 5 € (0,1}
n n
Vi(x,y,d) = £ (x,y"c“)) = (x+y+7\/a) e .,

16
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Proof. Using (3.26) - (3.29) and letting e - x for =0 and e=y

for o = 1, we have

£h(x,y,8) = (x+y+NQ) b/

81(X,Y,5) = R + c(e/Q) - h(eM)/a + (x+y+NQ) h/a
Note that h(eAQ) < c(eAQ) + R(eAQ)/Q < c(enQ)+R. Hence gl(x,y,o)

> fl(x,y,o) = (x+y+N ) h/Q = Vl(x,y,O). Now, suppose that the Lemma

is true for all n < k, Then for n = k+1,

K+l
g

x,y,O) R + C(XAQ) e ﬁ(x"'Y"xAQ) e Edij Vk(x'XAQ‘i'j, Y+i'j’ 1)

R + c(xAQ) + H(x+y-xAQ) + Zdij(x+y-xAQ+i+)\/a)h/a

> (xysNO)b/a = £ (x,y,0) .

Similarly one can show that gk+1(x,y, 1) > fk+l(x,y, 1) = (x+Y+7\/'a) h/a.

Hence Vn(x,y,ﬁ) = fn(x,y,f)) = (x+y+N@) h/a for all n > 1.

4, Optimal Discounted Cost Policy

In this section we present the main results of this paper. These

results are obtained directly from the lemmas and the Theorem of the

Section 3, We summarize these results in the following corollary.




havakic .

Corollary 4,1,

(i) I1f h<a(c + R/Q), then for all x, y and ®
V(x,y,8) = f(x,y,8) = (x+y+NQ) h/a .

(ii) If h > c + R/Q), then
(a) Of >A0g, &V < AOf, AV > AOg;
(b) AVO(x,y,b) > AVo(x,y+l,6), AVl(x,y,S) > AVl(x+1,y,6);
(c) &Y > ¢;
(d) For all x>Q, y>0 and 8=0 (x>0, y>Q, d=1)

v(x,y,%) = g(x,y,3).

From the comments at the end of Section 2, we know that vt -V, gn - g
and £° - f, and hence av® s av, Therefore, 4.1(i) follows from the
Lemma 3.5. Parts (a), (b) and (c) of the Corollary 4.1(ii) come from
Theorem 3.3 and Lemma 3.1, Finally, part (d) in the above is obtained

from Lemma 3.4,

Theorem L4,2.

(i) If h < (c + R/Q), then the policy of never dispatching the
carrier is Q-optimal and V(x,y,d) = h(x+y+NQ@)/a.

(i) Let h >a(c + R/Q) and (x,y,8) be the state of the system,
Then for & = 0 (5 = 1), there is a critical number Go(y) <Q (Gl(x) <Q,

such that following is an optimal policy:
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Dispatch the carrier if x > Go(y) (y > Gl(x)) and wait

for the next arrival if x < Go(y) (y < Gl(x)) Z

Furthermore, Go(y) and Gl(y) are respectively monotone decreasing

functions of y and x,

Proof. The first part of this Theorem follows directly from the Corollary
4.1(i) and the fact that f(x,y,5) is the cost of the action of not
disptaching the carrier,

Now, we prove the second part of the theorem for ® = 0. The

]

proof for the case ©® = 1 is similar to the case ® = 0., Let y be

fixed and

min{x > 0 : f(x,y,0) > g(x,y,0)} .

(4.1) Go(Y)

From the Corollary 4.1(ii)(d), it follows that for all x >Q
f(x,y,0) > g(x,y,0) = V(x,y,0) and hence Go(y).s Q. Now, it suffices

to show that

| (4.2) v(x,y,0) = g(x,y,0) for all x > Go(y) i

5 We establish the validity of (4.2) by induction, Clearly (4.2) holds
for x = Go(y). Assume that (L4.2) is true for some x > Go(y). Then

using the Corollary 4.1(ii)(a), we have

(4.3) V(x+1,y,0) - V(x,y,0) > g(x+1,y,0) - g(x,y,0) .




Then using (4.3) and the induction hypothesis, which imply V(x,y,0)

= g(x,y,0), we obtain V(x+1,y,0) > g(x+1l,y,0). But from (2.2). We
know V(x,y,0) < g(x,y,0) and hence V(x+l,y,0) = g(x+1,y,0). Again
from the definition (4.1) of Go(y), it follows that V(x,y,0) = f(x,y,0)
for all x < Go(y). To show Go(y) is monotonically decreasing, we note

that due to the Corollary L. 1(ii)(a), we have

: (4.4) f(x,y+1,0) - £(x,y,0) > g(x,y+1,0) - g(x,y,0)
and from (L4.1) we get

(4.5) f(x,y,0) > g(x,y,0) for all x > Go(y) .

E Combining (4.4) and (4.5), we get f(x,y+1,0) > g(x,y+1,0) and hence

GO(Y+1)'S Go(y). This completes the proof.

Since the control function G is mon-increasing, we can approximate
G by a linear function, The family of monotone decreasing linear functions

have the form

Go(y) = Ko-Boy and Gl(x) = Kl-ﬁlx where 0 < 51-5 Ki’ i=0, 1

In this case the approximately optimal policy is completely determined

by the critical numbers (Ko, BO’ K, Bl). Such simple policies are
ideally suited for practical applications. The values of these critical
constants can be determined by standard methods of calculus [2,3]. Some
i methods for computing these constants for BO = 61 = 1 can also be found

in [6]. For small Q, one can obtain the values of G by direct enumeration,
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because G < Q. We hope to present some exact and approximate methods
for computing G in the near futﬁre..

Finally, one can show that the Theorem 4.2 is valid for Q = 4w,
However, in this case the Lemma 3.l and Corollary 4. 1(ii)(d) are invalid.
The fact that G < « can be established by the method given in the
Lemma 3.2 of [2]. One can also readily extend these results for non-

linear holding costs.
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